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ABSTRACT 

A new approach to numerical experiments with self-gravitating 

stellar dynamical systems is  described that permits enough bodies to be 

included to make the problem interesting. 

solving the Poisson equation at  each integration step. 

porates the essential physical features of collision-free systems exactly 

and appears to be adaptable to a wide class of initial value o r  self- 

consistency problems. 

followed; preliminary results a r e  given. 

The forces a r e  obtained by 

The method incor- 

Stellar systems of 120 000 particles have been 

I. AGAME 

Consider the following game. A point is made to hop about over 

a two-dimensional lattice according to these rules: 

(1) It may reside only at  locations whose coordinates (x ,u)  a r e  

integers . 
(2)  It may hop from one allowed location to another, but must 

always alternate a hop in which only x changes with one in which only 

u changes. Let the value of x immediately following the nth step be 

x ( ~ ) ,  the value of u following i ts  next change af ter  x ' ~ )  was  reached 

(3 )  The value of x b+l) is given by 



(4) There is a table that gives the rule for  changing u according 

to the present value of x. 

the nth step be f(n) .  

Let the value read out of this table following 

is given by (n+1/2) Then the value of u 

The pair of moves is a complete step. 

As a n  example of this game (Fig. 1)  the particle might s tar t  from 

location "a" with x(*) = t 2 ,  u (-"') = 0; the table of f ' s  gives f ( O )  = - 2 so 

= - 2 ,  a s  shown at  b in Fig .  1. The game, played according to U (1/2) 

these rules, fills out Table 1. 

point (at values of n just following the indicated shifts) a r e  shown in 

Figure 1. 

lattice a t  n = 6. 

(x ,u)  values. 

just after the shift of the x value (n = integer t; locations a ,  c, e ,  g ,  i, k, m). 

The successive locations occupied by the 

In this case,  the point i s  back at  the same location in the 

Thereafter it would endlessly repeat the same set of 

The loop in Figure 1 connects those locations occupied 

Suppose there were many points in such a diagram, each hopping 

about the lattice according to the stated rules, without regard for the 

other points. Then each point on a given row of u = const. would be 

moved the same distance (to the right by the value of u) at  integer values 

of n a s  shown in Figure 2(a). The subsequent moves at  half-odd integer 

values of n would be upward along a column of fixed x by the amount 

specified by f. (Figure 2(b)). 
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Irrespective of the nature of the table of f-values (even if the table 

is  changed for  each n), it is easy to see that ( 1 )  The contents of a cell a r e  

transferred from one location to another a s  a unit. 

two cells cannot come to occupy the same location at  a later time, nor can 

the contents of one cell split to occupy two cells. 

run backward after n steps (taking care properly to reverse  the sequence 

of operations), all points would return to their original locations. 

Thus, the contents of 

(2)  If the process were 

11. RELATION TO DYNAMICS 

The game just described bears  several suggestive resemblances to 

dynamics. 

evaluating x's and u ' s  a t  different n 's  aside) for a one-dimensional problem 

if the identifications x-- corrdinate, u -- velocity, f -- force per unit 

mass ,  n -- time a r e  made. 

location stay together i s  reminiscent of the Liouville theorem in the phase- 

space. 

in the (discrete) phase space. 

describes this kind of motion in phase space, the game approximates to 

solutions of that equation. 

The lattice is like a discrete phase space (distinctions about 

The property that occupants of a lattice 

This system describes the reversible flow of an incompressible fluid 

Since the collision-free Boltzmann equation 

Equations (1) and (2)  a r e  a finite-difference scheme for integrating 

f = u; d = f ,  i f  the value of the time-step be incorporated into the definitions 

of u and of f to make the entire system dimensionally compatible. The 

game is like any other technique f o r  numerical integration in that there a r e  

higher-order terms ignored in this finite-difference scheme; these will  be 

discussed later. 
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The game contains the physical features of the phase-space description 

exactly. 

integrals of i ts  own. 

doing arithmetic. 

It is interesting to have an approximation method that possesses exact 

The game car r ies  out an approximate integration without 

The game clearly can be generalized to more dimensions. 

The te rms  ignored in the finite-difference scheme a r e  of the third 

order in the time-step (this i s  the object of alternating the velocity and 

The assignment of discrete values to the variables coordinate moves). 

corresponds to roundoff while the ignored t e rms  give r i se  to a truncation 

e r ror .  

obviously not to be trusted. 

methods to study this question (such a s  considering the mapping of a space 

at  one time onto a space a time-step la ter) ,  the essential features may be 

easily appreciated by requiring that the truncation e r r o r  (in the worst case) 

be nearly the same as the roundoff e r r o r ;  that there be no ambiguity about 

which location a point should be placed in after a complete step. 

essential features a r e  included in the one-dimensional formulation. 

Taylor series development of x and u a s  functions of the time leads to: 

Details on a scale not substantially la rger  than a cell size a r e  

Although we have used some more elaborate 

Again the 

A 

where T is the time step, L is the distance between successive lattice 

points in x (the corresponding interval in u ie L/T), the derivatives 
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a r e  to be understood a s  appropriate to the physical system being mimicked, 

and the quantities marked as  absolute values with a subscript I'max'' a r e  to 

be worst cases. 

dimensioned physical variables. If these relations a r e  satisfied, then the 

integer location of the point after a complete step will  be within a distance 

All  quantities (except e ) appearing in these equations a r e  

L (or E L/T) of the location that would be occupied by a particle that 

moved exactly according to the mechanical equations of motion. 

these two relations give similar bounds on the size of the time-step. 

reasons of economy and because of the discrete nature of the variables, 

should be a s  large a s  possible consistent with these relations. 

Typically, 

F o r  

T 

There i s  no feature of the quantization that affects the stability of the 

game a s  a finite-difference approximation to an  initial-value problem. 

This is  intuitively evident, particularly on the basis of another representation 

of the system that will be described in the next paragraph. 

grounds, let  the time step vary and let L vary with it in such a way that the 

ration L/T i s  constant. This has the effect (as T gets smal1er)of refining 

the lattice by putting more and more points in it. The problem is properly 

posed, and the approximation is consistent and satisfies the sufficient con- 

ditions for stability of Lax and Richtmyer (1956). 

On more formal 

In this connection, i t  i s  instructive to consider another representation 

of an n-body system that is useful for certain fundamental properties. The 

-space (6n-dimensional for a 3-dimensional problem) might also be 

quantized. 

6n-dimensional lattice. 

An n-body system would occupy some single location in the 

The 6n-dimensional lattice can be mapped onto a 
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one-dimensional a r ray  in which the representation of the system is  now 

a vector with all elements being zero except for one that describes the 

n-body system. 

phase point will move to a new location in the )( -space, where it will 

be represented by a new vector all of whose elements, save one, a r e  zero. 

That one element is  again unity. 

completely determined (for a classical system), the transformation of 

one of these vectors into the other may be represented by a square matrix. 

Because the motion is determined and time- reversible, the transformation 

matrix contains just one non-zero element in each row and column. 

non-zero elements must be unity. 

system configuration. 

representation by a transformation matrix having the same properties. 

It is clear, since the matrix is finite (for bounded motion), that it is an  

element of a cyclic group. 

steps in a Poincare' recurrence time. 

intuitively obvious that the game is stable as  an  initial value problem. 

When the system advances through a time-step, the 

Since the motion in the $ -space is 

The 

The matrix does not depend upon the 

The result of two time-steps must be capable of 

The order of the group is the number of time 

This representation makes it 

III. MACHINE CALCULATION 

The game was designed to fit easily into the basic operations of a 

digital computer. 

representation of a stellar dynamic& system. 

the Maniac III computer a t  the University of Chicago, used a two-dimensional 

system (4-dimensional phase space) with 48 x 48 cells in configuration space 

Programs have been written to play the game, a s  a 

The first, written f o r  
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and 15 x 15 in velocity space and was  tried with a single particle in a 

"harmonic oscillator" force field to explore the programming problems. 

Later, the full stellar dynamical problem was coded f o r  the IBM 360/75 

at the Goddard Institute f o r  Space Studies in New York. The properties 

of this machine that make it well suited to this problem a r e  1) large 

memory (4 million "bytes" of l'rlarge core store" = 2 
25 bits, plus 1 million 

"bytes'' of fas t  working storage) and 2 )  a fas t  processor. A two-dimensional 

problem can fit nicely into this store by dividing it into 128 x 128 cells in 

configuration space, with a 45 x 45 velocity space attached to each con- 

figuration space cell. With this selection, the large core is 2025/2048 filled. 

The configuration space is made pe riodic--a particle leaving one boundary 

i s  replaced by one entering at  the opposite side with the same velocity. A 

similar recipe in velocity space did not seem feasible: instead, the velocity 

space was truncated--any particle that acquires 1x11 o r  Ivl 2 23 is said to 

have "spilled" and is  removed from the phase space array.  

tally of spills is kept. 

A running 

The system described so far  would work for any forces; the forces 

of interest for stellar dynamics a r e  self-gravitational. Normally, n-body 

integrations proceed by calculating the resultant force on one particle due 

to all the others--the pair interaction. This becomes expensive when many 

particles a r e  involved. 

In our calculation, the forces due to self-gravitation a r e  calculated 

at each step by solving the Poisson equation. 

a r e  used to reduce the number of calculations f rom N (where N is the 

Fourier-transform xm thods 

4 
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number of permitted locations in a periodic length along one configuration 

3 
direction, N = 128 in this problem) to a multiple of N . 
i s  reduced by using even and odd parts. 

transformation process a r e  possible (Cooley and Tukey, 1965); because the 

force calculation requires a small part  of the step time, further economies 

cannot produce a significant reduction in computation time. 

The calculation 

Further reductions of the Fourier-  

There is  a difficulty in the Fourier transform method that caused us  

some trouble. 

be used. 

lattice points along an axis in the configuration space (128 here). 

truncation of the Fourier ser ies  for the density corresponds to a certain 

density distribution that may be significantly non-zero away from the integer 

lattice locations. These nearby bumps in the density distribution may pro- 

duce a greater force than that due to the miass that supposedly generated the 

density distribution. 

forces calculated showed l'diffraction patterns" that were manifestly incorrect. 

The convolution theorem in Fourier transforms may be used to generate the 

required force on each lattice-point directly by Fourier transforming the 

force-field about a point mass at the origin. 

poorer but adequate for the game since the forces muet take on integer 

values, axid'large values of the force cannot be permitted (Eq's 3 and 4). 

In the present problem, the forces a r e  restricted to have If1 < 8. 

The periodic configuration space permits Fourier se r ies  to 

Only a s  many Fourier components need be used as there a r e  

However, 

When we used analytically derived coefficients the 

The numerical accuracy is 

It is the fact that the forces need not be determined to high precision, 

and can thus be obtained from the Poisson equation a t  a fairly small number 
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of locations that lets the game handle very large numbers of particles. 

The time required for  the force calculation is independent of the number 

of particles. It is important, however, that the force calculation take 

proper account of large numbers of particles a t  substantial distances. 

This is done by calculating in floating point, and only truncating to integer 

values a t  the very last  step. 

the "integration" that requires arithmetic. 

The force calculation is the only part  of 

Essentially any desired force-law can be built into this problem by 

selecting the force field to be Fourier transformed. 

between pairs of particles derivable from a potential -GM/(a tx  t y  ) 

Periodicity is taken into account in the configuration space by including 

the contribution to the forces from the periodically repeated mass  distri- 

butions; the gravitational field arising f rom the mean density is suppressed. 

The inclusion of a # 0 is equivalent to considering mass distributions that 

extend over a few neighboring lattice locations. Among the difficulties 

that a r e  avoided by naing a # 0, a r e  f o r  example, close encounters and 

the question of energy conservation. 

We use a force 

2 2 2 1/2 

The potential energy of two particles 

L 
on the same lattice-point is -GM /a; i f  a - 0, this becomes infinite, 

and our system could not even approximate to energy conservation or  to 

the virial  theorem without an _.- ad hoc treatment of the potential energy of 

coincident particles. 

(through the action of the collision term in the Boltzmann equation), it is 

not mandatory that we t reat  close encounters correctly. 

the Poisson equation- -and the Boltzmann equation- -both imply some smoothing 

Since the system cannot relax in the usual sense 

Furthermore,  
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of the density distribution of point particles. 

different values of - a but have not yet done so. 

We plan to experiment with 

The program, a s  it now runs, makes about 8 complete steps per  

hour. About half of the step time is consumed in recording the results. 

At each step, the entire phase space is copied onto magnetic tape; about 

five time steps f i l l  a reel of tape. 

the tape copies, but with no need to re-run the problem. The full force 

calculation, to produce the integer values of the x and y components of the 

force, each on the 128 x 128 grid, requires about 50 seconds. This is 

not particularly fast compared to some figures that have been quoted in the 

l i terature (Hockney, 1964). 

Post-run summaries can be made from 

At each integration step, the density, the vector moment of velocity, 

the velocity ellipse, and the vector force field a re  plotted for each relevant 

configuration space cell. 

it  is fairly easy to construct subprograms that can form the required 

quantities from the tape copies of the phase space. Some of the first 

quantities that we expect to form include the phase density, f (  E, J, v), 
a s  well  a s  a decomposition of the motions into wave-like and convective 

There is much more information available- -and 

parts. 

Rather than removing the 'lspills" f rom the problem as we have, 

it would be possible to keep track of them and to integrate their orbits 

more carefully. The small number of "spills" obtained in the examples 

run so far indicates that our present treatment presents no difficulty for  

r ea80 nably scaled pro blems . 
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Other boundary conditions could easily be substituted for those we 

The system might have reflecting bar r ie rs  in velocity space, o r  in use. 

configuration space, o r  the periodic condition in configuration space might 

be dropped, treating particles that reach the configuration boundary a s  

"escapes", just a s  those that have reached the velocity boundary a r e  

spills. 

Relaxation could be incorporated into the problem by admitting 

scatterings with a random property. 

ways, but one simple way would be to rearrange some of the velocities of 

particles in a given configuration space cell,  in a random way. This can 

be done in a manner that will conserve the physical integrals (energy, 

momentum) to within the accuracy allowed by the admissible velocity 

values. 

This might be done in any of several 

The game might be played using different storage representations. 

The one chosen seems well suited to a Fe rmi  gas, where there i s  a n  

- a prior i  exclusion to prevent more than one particle per phase space cell,  

but stellar problems a r e  realistic only i f  the density is so low that the 

distortion caused by limiting to one particle per phase cell is negligible. 

With the present 33 million phase space cells, we feel comfortable inserting 

10 - 10 particles. W e  conaidered partitioning the memory in such a way 

as to permit several bits to represent each cell--an 8-bit ltbytett being a 

reasonable unit. 

phase space cell--different masses ,  i f  only one particle per  cell is permitted, 

o r  different numbers of particles. 

5 6 

Then the extra bite might represent some attribute of the 

We felt that finer-grained treatment of 
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la rger  numbers of equal mass  particles would be more informative, and 

designed the program accordingly. Another memory allocation that has 

many desirable properties f o r  this problem is to use l is t  storage; a scheme 

that uses a l l  available storage fairly well, but which encounters a certain 

storage and processor overhead. 

IV. PRELIMINARY RESULTS 

So far,  we have tried several problems, all of which a r e  indicated 

in Table 2. 

and Table 2 only indicates the situatio'ri a t  a certain date. 

Because the program is new, new results a r e  coming rapidly, 

Each problem run 

suggests several new ones, and each way of summarizing the results ra ises  

W e  hope to prepare more detailed questions that require new summaries. 

reports of the results and of the very interesting physical implications, 

but for the present must res t r ic t  ourselves to a qualitative description of 

the results, particularly as  they reflect upon the validity of the approximation. 

Scaling the problem is the most delicate part  of starting a run with a 

5 6 
new set of initial conditione; a set of initial conditions for 10 - 10 particles 

requires some care.  

supplied f o r  each configuration space point. 

condition is pathological, and changes quickly as the integration proceeds; 

there  seems to be little point either in selecting bizarre  initial conditions 

o r  in avoiding rapid changes through the uee of stationary self-consistent 

models. 

(1) the value of GM, (2) the number of particles in a configuration space 

Internal motions and a velocity dispersion must be 

Normally almost any initial 

The quantities that may be specified as the initial conditions a r e  
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cell, and (3) the distribution of those particles in velocity space to 

represent the desired mean velocity and velocity dispersions. 

the choices of GM and of the number of particles in a configuration space 

cell ( G )  sets  the time-scale; the value of GP that would correspond to a given 

set  of conditions is  essentially GM a / a ,  where a is the quantity that 

appears in the force calculation. 

parameters empirically. 

jection of the desired model onto configuration space followed by a calculation 

of the resulting forces at every lattice point. 

yield a greatest value for a force component of about 3, and internal 

motions a r e  chosen according to some simple pattern approximately to 

balance the gravitational forees. 

load the phase space a r ray ,  and checked separately before being used with 

the main integration routine. 

Effectively, 

We find it most convenient to set the adjustable 

The process of scaling the problem star ts  with a pro- 

The constant G M  is chosen to 

A machine program is then written to 

The f i r s t  problem run was the "quiet circle. I t  It has a very high degree 

The retention of symmetry- -exact fourfold symmetry in the initial condition. 

of the exact fourfold symmetry is a valuable check on the routine. 

steps, the fourfold symmetry is still exact. 

different rounding to integer values in the force calculation has lost some 

of the symmetry--it now shows a twofold symmetry. This means that in- 

accuracies of about 10 -6 - 10 

and that the calculation preserves the exact integrals of the approximation to 

a satisfactory degree. 

by 4 shows that the symmetry w a s  lost somewhere along the line). 

At 25 

Somewhere, by 60 steps, 

-8 
a r e  appearing in our numerical processes, 

(The spilling of a number of particles not divisible 

Another 
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check on the integration process is by comparing the results (as number- 

densities projected onto the configuration space) between the "quiet" and 

"noisy" cases,  the "noise" being a perturbation in the velocity space. 

These problems, in both cases where comparisons could be made, remained 

reassuringly similar out to about 18-20 integration steps. 

noise is indicated by the t R t e r m  in the <velocity> entry; R is t 1, 0, o r  -1 

with equal probability, and is produced by a pseudo-random number generator. 

In Table 2 ,  the 

These systems feel the presence of identical systems repeated over the 

periodic lattice; they tend to stretch out preferentially toward their nearest 

neighbors. We could remove the explicit neighbor -interaction (with the 

Fourier series force calculation, there will always be effects due to 

the periodicity present), which should reduce this effect. 

many things we hope to t ry  sometime. 

neighbor interaction especially strongly. 

This is one of 

The rectangular systems show the 

The circle problems show an  interesting initial collapse , followed 

Later, the system collapses by the development of a hole in the center. 

again, only to develop the hole anew-- although with a much more complex 

structure. The central condensation is greatest at about 6 steps and again 

at  about 18 steps. 

again at about 24 steps. 

and the background around the central mass fills up with evaporated par-  

ticles. "Spiral" patterns develop, but are short-lived. After 40-50 steps, 

the systems settle down to something that looks like a steady state, with 

very little further development. 

The hole i s  most pronounced at about 12 steps and opens 

All the time, c lear  differential rotations persist ,  

About half of the particles a r e  in  the central 
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mass ,  and the other half filling the general background. Densities 

(number of particles in a cell of the configuration space) run to about 

170 near the center, and  drop off to about 4-5 in the outer region. 

The central peak is about 10-15 cells wide (diameter at half maximum). 

In the "noisy circle", this final state appears to be a rotating ellipse, 

while the symmetry of the "quiet circle" forces a circular shape. 

fourfold symmetry forced by the neighbors is lost in  the noisy circle  

problem after about 20-30 steps. 

The 

The rectangles tend to build bridges to the next periodic cell. The 

fast rectangle rotated fast enough that i t  tore itself into two pieces which 

fly about and collide with one another several  t imes in the 51 steps run. 

The pieces interpenetrate. 

The "Jeans problem" was run to see whether we could mimic the 

The force constant, GM, was set  "Jeans instability" with this system. 

very large to assure  that there would be nonzero forces somewhere in 

the system. 

generator. 

a pattern developed. 

at  7 steps the valleys a r e  beginning to f i l l  in, but by then 1/10 of the initial 

particles have spilled. 

about one full wave per  priodic cell; the Jeans length for  this problem i o  

about 8-16 small cells (1/16 to 1/8 of a periodic cell). We cannot make 

quantitative comparisons with the "Jeans instability" at this time because 

The initial state was loaded by a pseudo-random number 

Because the force was so large, spills followed a s  soon a s  

In about 3 steps the pattern is very well developed, 

The wavelength of the pattern that built up was 
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our time step was too large. 

with this problem. 

We hope to ca r ry  out further experiments 

The approximation conserves its integrals very well, and appears 

to conserve the usual integrals of the mechanical system being mimicked 

better than we had expected. 

collision-free motion exactly, the development of the systems is probably 

a reasonably faithful representation of a physical system. 

pleased with the evident good behavior of the game, and anticipate a fruitful 

application to s te l lar  dynamical problems. 

Because the game matches the physics of 

We a r e  very 

Although the game was devised as a method of attacking stellar 

dynamical problems, i t  is perhaps even better suited to other kinds of 

problems. The representation used really describes a Fermi  gas ,  and i t  

is natural to think of applying this technique to crystal  physics. Applications 

to hydrodynamics a r e  evident. Another possible application is  to turbulence 

theory, representing a wave-number space. In all  of these problems, 

meaningful results require the introduction of interactions between "particles", 

fixed force fields, and other features that a r e  easy to do, but which we have 

not yet done. 

The work reported here  was started at the Institute for Computer 

Research at the University of Chicago, where it was supported by the 

U. S. Atomic Energy Commission under contractAT(11-1)-614. The work 
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Senior Poetdoctoral Resident Research Associateship supported by the 

National Aeronautic 8 and Space Administration. The hospitality of 
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APPENDIX 1 

SCALING TO PHYSICAL UNITS 

According to the scaling chosen, a calculated system can 

represent any of a number of physical systems. 

units to be determined, but the requirement that the gravitational 

constant take on the correct  physical value limits the free choice to 

two. In principle, any two physical quantities (of different dimensions) 

might be chosen, but it appears that selecting the density and velocity 

units may be most convenient. 

There are three physical 

The scaling of physical units is determined in the initial con- 

These usually consist of a constant number of particles per  ditions. 

configuration space cell (e ) inside some boundary. 

ical  coefficient 

dimensionless); let K be the largest  numerical value that results from 

a force calculation with both y and Q se t  to unity. Then y is chosen 

so that y r  K c=! Fmax, where Fmax is the largest  value of the force 

to be allowed in the initial condition (about 3). 

There is a numer- 

in the force calculation ( y is effectively GM made 

The physical time step ie determined by’ the density in the 

corresponding physical system: i t  is 1.5 x 10 7 ( -$ / 13 ) 1/2 

in years,  with the density expressed in solar masses  per  cubic parsec. 

If the unit of velocity be 2f (km/eec), then the units of length (the 



die tance between succes sive lattice points in configuration space) are 

L = 15(y cr {'z V/f6 parsecs,  and 'w\ = (3400/~ )( 6 )3/2 r3/p 'k 
solar masses. The mass W is the mass  of one of the "particlesI1 

that is moved about in the game. It may be regarded as an aggregate 

of stars, rather than as a single star, for some purposes. 

As an example, the rectangle and circle problems have y Q - N N ~ ;  

3 they may be scaled to the solar  neighborhood taking Q e 0.15 M /pc , 

so the time unit is 3.9 x 10 years. Sixty steps of evolution then repre-  

9 sent about 2.5 x 10 years. Making the largest  circular velocity 

0 
7 

(10 units) match the rotational velocity in the solar  neighborhood (250 km/sec) 

sets the length L at about 1000 pc. 

figuration space cell are each of about 4 x 10 M 

particles represent 5 x 10 

and the rm8 peculiar velocities (2.4 units) are about 60 km/sec. 

The 37 masses initially in each con- 

6 and the total of 120 000 
0' 

11 
Mg. The periodic length is about 125 kpc, 
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APPENDIX 

THE PROGRAMS 

F o r  the most part ,  program details a r e  available f rom internal 

documentation. However, the general structure of the program, and 

of its principal par ts ,  may not be evident f rom the listings. 

is  intended to give an overall picture of the program organization to 

facilitate reading of the program listings. 

This appendix 

The program is basically a loop consisting of three main parts 

(Figure Al), those in which (1) the particles a r e  shifted along a coordinate 

direction at fixed velocity (Figure 2a; labelled "advance coordinates" 

in Figure Al) , (2) the forces are calculated for  each configuration space 

lattice point, and (3) the particles a r e  shifted along a velocity direction 

a t  fixed coordinate (F igu re  2b; labelled "advance velocities'' in Figure Al). 

The stage at which the phase array is copied onto tape is the stage a t  

which all summaries a r e  made. 

after the coordinates a r e  advanced, as the interpretation of velocity 

plots requires knowing that the plot labelled I ' d 1  refers  to velocities 

a t  'fn-l/Z1l. 

The entry point is so located that the process can be re-started from a tape 

copy of the phase space. 

It is important to note that this is done 

The step number is augmented after the "copy on tape" stage. 

Two ar rays  dominate the discussion. PHASE is the a r r a y  of bits 

that represents the phase space. It can be declared in FORTRAN as 

PHASE (4,128,2025). A bit belonging to the coordinates x, y, us v will 

be located a t  word (word=32 bits) address 

BASE t x/32 t 4*y t (4*128) *u t (4*128*45) *v 



(BASE includes the obvious subtraction to avoid the FORTRAN s t a r t  from 

1 indexing). 

numbered from the x=l position. 

divide. 

of PHASE onto configuration space. 

with 2-index arrays referring to coordinates (CONFIG, F X ,  F Y )  that 

the first index represents x, the second represents y. 

integer a r r ays  that contain the values of the force components to be used 

at  each (x, y) point. 

The location corresponding to given x is the bit consecutively 

The divide is  in the sense of an integer 

CONFIG is a 128*128 a r r ay  of integers that contains the projection 

We use the convention throughout 

F X  and F Y  are 

The program breaks into two parts: that necessary to establish 

the initial state of the running routines, which is run only once to get the 

process started, and the main integration loop. 

is just a straight line proceeding through the operations. 

performed in sequence, follows: 

SPILL= 0 

Clear PHASE 

A flow chart of the startup 

A l is t  of them, 

(SPILL is the tally of spills) 

and CONFIG 
arrays 

CALL CONSTR (MCOS, MSIN, MFOR, FX, CONST) 
(CONSTR is  a routine to load the a r rays  
MCOS (coZsines for Fourier Transform), 
MSIN (sines for Fourier  transform), and 
MFOR (convolution coefficiente) for the 
force routine, with the value of GM specified 
by CONST. 
as a temporary storage in the process). 

F X  = one of the force a r rays ,  us4 

CALL SETINT (PHASE, N, M) 
(SETINT initializes SETONE routine; SETON1 
is called by LOAD to place bits into the a r r a y  
PHASE at apecified x, y, u, v values) 

CALL LOAD( CONFIG) 
(LOAD generates the pattern of bits to be 
se t  into PHASE; LOAD calls SETONE to do th 
actual loading) 



OUTPUT At this stage, some features of the initial 
state are printed and the initial phase space 
array is ,copied onto magnetic tape, through 
some special routines a s  well a s  the output 
routines used at  each stage of the loop. 
is no fixed output routine,. 

There 

Enter loop. The loop is shown in Figure Al. 

The routines appearing in the loop are indicated in Figure Al. 

As just noted, there is no fixed output routine. The principal output 

functions at  run time a r e  to copy the PHASE a r r a y  onto magnetic tape and to 

prepare those plotter tapes that are generated at run time. Certain printed 

summaries are also prepared (number of spills, step number) at this stage. 

The calls and functions of the other routines a r e  a s  follows. SHIFTI is 

the routine that does circular bit shifts in x ,y  a t  fixed u,v. The shift 

along x a t  fixed y,u,v is a circular shift of 128-bit objects. The shift along 

y at  fixed x, u, v is a relocation of 128-bit "words" in memory, exactly like 

the circular shift. The projection of PHASE onto CONFIG is done by SHIFTI. 

(Call is CALL SHIFTI). SCRBLE is the routine that moves bits in u, v 

at  fixed x, y according to FX and Fy. The u, v moves a r e  made simultaneously. 

Moves a r e  made in a direction opposite to the forces so that bits a r e  always 

moved into locations that have been emptied ear l ier  in the current step. 

The bit location to be moved is examined; if i t  is zero, the move is not 

carr ied through, A gain in running speed is made by copying the parts of 

PHASE that SCRBLE is  working on into fast memory. 

(PHASE, FX, F Y ,  N, M, SPILL)). 

(Call is CALL SCRBLE 

FORCE (Call is CALL FORCE (CONFIG, FX,  F Y ,  MCOS, MSIN, MFOR)). 

The force calculation is rather complicated. It proceeds by Fourier trans- 



A 2 -  4 

formations. 

written in terms of sines and cosines; only those parts that contribute to 

the final result a r e  retained. 

into four  parity states (the numerical coefficients that belong with this process 

a r e  absorbed into the coefficient that is used in generating the matrix MFOR). 

These a r e  each Fourier transformed by matrix-multiplication through a BAL 

subroutine MTRXMY (A, B, C) that forms  the 65 x 65 producd of A*B and 

placed the result in C. 

corresponding (CAI/BPS) FORTRAN routine. 

component calculations proceed from the same Fourier tranformed density, 

the transformed density is saved. 

rows and columns of the Fourier-transformed (or  re-transformed) a r rays  

must be doubled. 

(Fourier transform of density) stage, but must be done explicitly after the 

re-  transformation to configuration space and before the re- composition from 

parity states. 

of their parity states are not doubled. On the recombination, the force values 

are rounded to integer values, and restricted to maximum values (magnitudes) 

of 7. Should i t  become necessary to flag cases in which the force exceeds this 

limit, this is the par t  of the routine in which that should be done. The sines an 

cosines were  stored in matrix form--although there is a great  deal of redundan 

because they are most rapidly available that way. The force calculation requir 

about 50-55 seconds. 

The Fourier  transform is actually a complex transformation 

The calculation is reduced by decomposition 

The BAL routine is about four times faster  than a 

Since both the x and y force 

With the parity decompositions, the borderir 

This is done in the matrix MFOR for  the intermediate 

Bordering rows o r  columns that contain all zeroes because 

Among the auxiliary programs, two are useful before the loading to 

help set the scaling (the value of CONST in the starting routine CONSTR). 



One of these does the force calculation for a given a r r a y  CONFIG, and prints 

the values of the forces a t  each of the (16384!) lattice points as  a floating 

point number, with GM=1. 

exactly in the form required by the main program, and forms tallies of (1) 

The second takes the subroutine LOAD( CONFIG) 

the total number of particles loaded, (2) the sum of squares of the velocities, 

(3) the angular momentum about the lattice-point (64,64) as origin, (4) the 

maximum and minimum values of x, y, u, v (in the FORTRAN index convention), 

and (5) the summed velocities (u-23) and (v-23) for all  particles. LOAD 

and SETONE take the integer values of x, y, U, v to conform to FORTRAN 

indexing conventions of allowing only natural numbers; hence the range on x 

and y is 1 to 128, that on u and v is 1 to 45, with u o r  v = 23 corresponding 

to zero velocity. 



n 

- 1/2 

0 

1 /2 

1 

3/2 

2 

5/2 

3 

7/2 

4 

9/2 

5 

11/2 

6 

Table 1. MOVES IN THE GAME 

X 

t2 

0 

-2  

- 2  

0 

t 2  

t 2  

U 

0 

- 2  

- 2  

0 

t2 

t2 

0 

f 

-2 

0 

t2 

+2 

0 

- 2  

- 2  

label 

a 

b 

C 

d 

e 

f 

g 

h 

i 

j 

k 

1 

m 



I o ,  

IC 
IC 
00 

N 
N 
4 

IC 
1c 
00 

N 
N 
rl 

x 
m 
c, .I+ 

E n 

r 

d 

c, .d 

m 

a“ 

A 
N 

$ 

A 

w 
* J  m u  
O n  z u  

m 

I c, 



REFERENCES 

Cooley, J 

Hockney, R. W. , 1965, Journ. Assoc .  Comp. Mach. 12, 95-113. 

Lax, P. D. and Richtmyer, R. D. , 1956, Comm. Pure and Appl. Math. 

W. , and Tukey, J .  W . ,  1965 Math. Comp. 19, 297-301. 
rn 

;3oc 

9, 267-293. 
3 



FIGURE CAPTIONS 

Figure 1 .  

Figure 2.  

Moves in an example of the game. 

Systematic moves of many particles in the game. 

moves in which x i s  changed according to the present 

value of u. (b) the moves in which u i s  changed by the 

amount of f(x). 

(a) the 
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Figure A l .  Flow chart o f  computer programs f o r  the game. 
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